Infinite dimensional non-symmetric Borsuk-Ulam theorem
We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, with and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.
We introduce a method to treat a semilinear elliptic equation in (see equation (1) below). This method is of a perturbative nature. It permits us to skip the problem of lack of compactness of but requires an oscillatory behavior of the potential b.
Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the -Laplacian impulsive problem.
We provide a number of either necessary and sufficient or only sufficient conditions on a local homeomorphism defined on an open, connected subset of the n-space to be actually a homeomorphism onto a star-shaped set. The unifying idea is the existence of "auxiliary" scalar functions that enjoy special behaviours along the paths that result from lifting the half-lines that radiate from a point in the codomain space. In our main result this special behaviour is monotonicity, and the auxiliary function...
We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...
This paper contains a theorem on the existence of monotonic and integrable solutions of a functional-integral equation. The proof of that theorem is based on the technique associated with the notion of a measure of weak noncompactness.
This paper is concerned with integral control of systems with hysteresis. Using an input-output approach, it is shown that application of integral control to the series interconnection of either (a) a hysteretic input nonlinearity, an L2-stable, time-invariant linear system and a non-decreasing globally Lipschitz static output nonlinearity, or (b) an L2-stable, time-invariant linear system and a hysteretic output nonlinearity, guarantees, under certain assumptions, tracking of constant reference...
Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set is described by a system of linear as well as strictly convex constraints. The convergence analysis of...
In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent...