On a new result on the existence of zeros due to Ricceri.
In this paper we consider an elliptic system at resonance and bifurcation type with zero Dirichlet condition. We use a Lyapunov-Schmidt approach and we will give applications to Biharmonic Equations.
We re-examine a quadratically convergent method using divided differences of order one in order to approximate a locally unique solution of an equation in a Banach space setting [4, 5, 7]. Recently in [4, 5, 7], using Lipschitz conditions, and a Newton-Kantorovich type approach, we provided a local as well as a semilocal convergence analysis for this method which compares favorably to other methods using two function evaluations such as the Steffensen’s method [1, 3, 13]. Here, we provide an analysis...
In the paper by Hilout and Piétrus (2006) a semilocal convergence analysis was given for the secant-like method to solve generalized equations using Hölder-type conditions introduced by the first author (for nonlinear equations). Here, we show that this convergence analysis can be refined under weaker hypothesis, and less computational cost. Moreover finer error estimates on the distances involved and a larger radius of convergence are obtained.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
In this paper, a nonlinear backward heat problem with time-dependent coefficient in the unbounded domain is investigated. A modified regularization method is established to solve it. New error estimates for the regularized solution are given under some assumptions on the exact solution.
We present some results concerning the problem , in , , where , , and is a smooth bounded domain containing the origin. In particular, bifurcation and uniqueness results are discussed.
Some strong convergence theorems of common fixed points of asymptotically nonexpansive mappings in the intermediate sense are obtained. The results presented in this paper improve and extend the corresponding results in Huang, Khan and Takahashi, Chang, Schu, and Rhoades.
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and ⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅), where C,D are two closed convex subsets of a normed linear space X with dual X*, and and are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian’s...