Displaying 961 – 980 of 1511

Showing per page

On the convergence of two-step Newton-type methods of high efficiency index

Ioannis K. Argyros, Saïd Hilout (2009)

Applicationes Mathematicae

We introduce a new idea of recurrent functions to provide a new semilocal convergence analysis for two-step Newton-type methods of high efficiency index. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar type, and a differential equation containing a Green's kernel are also provided.

On the double critical-state model for type-II superconductivity in 3D

Yohei Kashima (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we mathematically analyse an evolution variational inequality which formulates the double critical-state model for type-II superconductivity in 3D space and propose a finite element method to discretize the formulation. The double critical-state model originally proposed by Clem and Perez-Gonzalez is formulated as a model in 3D space which characterizes the nonlinear relation between the electric field, the electric current, the perpendicular component of the electric current...

On the existence of multiple solutions for a nonlocal BVP with vector-valued response

Andrzej Nowakowski, Aleksandra Orpel (2006)

Czechoslovak Mathematical Journal

The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.

On the Halley method in Banach spaces

Ioannis K. Argyros, Hongmin Ren (2012)

Applicationes Mathematicae

We provide a semilocal convergence analysis for Halley's method using convex majorants in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our results reduce and improve earlier ones in special cases.

Currently displaying 961 – 980 of 1511