Commuting normal operators in partial -algebras
The main facts about unbounded C*-seminorms on partial *-algebras are reviewed and the link with the representation theory is discussed. In particular, starting from the more familiar case of *-algebras, we examine C*-seminorms that are defined from suitable families of positive linear or sesquilinear forms, mimicking the construction of the Gelfand seminorm for Banach *-algebras. The admissibility of these forms in terms of the (unbounded) C*-seminorms they generate is characterized.