Weak convergence theorem by an extragradient method for variational inequality, equilibrium and fixed point problems.
Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented.