Random generalized set-valued strongly nonlinear implicit quasi-variational inequalities.
The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree...
We prove some optimal regularity results for minimizers of the integral functional belonging to the class , where is a fixed function, under standard growth conditions of -type, i.e.
A class of parabolic initial-boundary value problems is considered, where admissible coefficients are given in certain intervals. We are looking for maximal values of the solution with respect to the set of admissible coefficients. We give the abstract general scheme, proposing how to solve such problems with uncertain data. We formulate a general maximization problem and prove its solvability, provided all fundamental assumptions are fulfilled. We apply the theory to certain Fourier obstacle type...
The existence of a solution to the dynamic contact of a body having a singular memory with a rigid undeformable support is proved under some weaker assumption than that in [3].
Based on conjugate duality we construct several gap functions for general variational inequalities and equilibrium problems, in the formulation of which a so-called perturbation function is used. These functions are written with the help of the Fenchel-Moreau conjugate of the functions involved. In case we are working in the convex setting and a regularity condition is fulfilled, these functions become gap functions. The techniques used are the ones considered in [Altangerel L., Boţ R.I., Wanka...