Displaying 181 – 200 of 232

Showing per page

Su alcune proprietà delle funzioni convesse

Luigi Ambrosio (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro riassumiamo alcuni risultati di una ricerca riguardante le singolarità (punti di non differenziabilità) delle funzioni convesse. Questa ricerca copre vari aspetti, che vanno dalla stima della dimensione di Hausdorff di certi tipi di singolarità fino allo studio della loro propagazione. Studiamo anche problemi di semicontinuità e rilassamento collegati all'area del grafico del gradiente di una funzione convessa e l'esistenza dei determinanti, in senso debole, dei minori della matrice...

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Stanisław Migórski (2012)

Open Mathematics

We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...

Subdifferentials of Performance Functions and Calculus of Coderivatives of Set-Valued Mappings

Ioffe, Alexander, Penot, Jean-Paul (1996)

Serdica Mathematical Journal

The paper contains calculus rules for coderivatives of compositions, sums and intersections of set-valued mappings. The types of coderivatives considered correspond to Dini-Hadamard and limiting Dini-Hadamard subdifferentials in Gˆateaux differentiable spaces, Fréchet and limiting Fréchet subdifferentials in Asplund spaces and approximate subdifferentials in arbitrary Banach spaces. The key element of the unified approach to obtaining various calculus rules for various types of derivatives presented...

Sufficient Conditions of Optimality for Control Pproblem Governed by Variational Inequalities

Ndoutoume, James (1995)

Serdica Mathematical Journal

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.The author recently introduced a regularity assumption for derivatives of set-valued mappings, in order to obtain first order necessary conditions of optimality, in some generalized sense, for nondifferentiable control problems governed by variational inequalities. It was noticed that this regularity assumption can be...

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Sufficient optimality conditions for multivariable control problems

Andrzej Nowakowski (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study optimal control problems for partial differential equations (focusing on the multidimensional differential equation) with control functions in the Dirichlet boundary conditions under pointwise control (and we admit state - by assuming weak hypotheses) constraints.

Sul problema di contatto tra piastre

Aldo Maceri (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studia il problema di contatto tra due piastre sottili linearmente elastiche, incastrate al bordo, poste inizialmente a distanza δ e trasversalmente caricate. Si fa l'ipotesi che il contatto tra le due piastre, a deformazione avvenuta, sia privo di attrito. Il problema dell'equilibrio elastico è formulato per via variazionale in termini di lavori virtuali o, equivalentemente, di minimo del funzionale dell'energia. Il quadro analitico di riferimento è quello della teoria delle disequazioni variazionali...

Currently displaying 181 – 200 of 232