The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational formulation...
This work is concerned with the flow of a viscous
plastic fluid. We choose a model of Bingham type
taking into account inhomogeneous yield limit of the
fluid, which is well-adapted in the description of
landslides. After setting the general
threedimensional problem, the blocking property is
introduced. We then focus on necessary and
sufficient conditions such that blocking of the fluid
occurs.
The anti-plane flow in
twodimensional and
onedimensional cases is considered.
A variational formulation...
Conditions under which the inf-convolution of f and g has the cancellation property (i.e. f □ h ≡ g □ h implies f ≡ g) are treated in a convex analysis framework. In particular, we show that the set of strictly convex lower semicontinuous functions on a reflexive Banach space such that constitutes a semigroup, with inf-convolution as multiplication, which can be embedded in the group of its quotients.
This paper is the second part of a work devoted to the study of variational problems (with constraints) in functional spaces defined on domains presenting some (local) form of invariance by a non-compact group of transformations like the dilations in RN. This contains for example the class of problems associated with the determination of extremal functions in inequalities like Sobolev inequalities, convolution or trace inequalities... We show how the concentration-compactness principle and method...
After the study made in the locally compact case for variational problems with some translation invariance, we investigate here the variational problems (with constraints) for example in RN where the invariance of RN by the group of dilatations creates some possible loss of compactness. This is for example the case for all the problems associated with the determination of extremal functions in functional inequalities (like for example the Sobolev inequalities). We show here how the concentration-compactness...
For convex continuous functions defined respectively in neighborhoods of points in a normed linear space, a formula for the distance between and in terms of (i.eẇithout using the dual) is proved. Some corollaries, like a new characterization of the subdifferential of a continuous convex function at a point, are given. This, together with a theorem from [4], implies a sufficient condition for a family of continuous convex functions on a barrelled normed linear space to be locally uniformly...
In this paper, we first establish the dual form of Knaster- Kuratowski-Mazurkiewicz principle which is a hyperconvex version of corresponding result due to Shih. Then Ky Fan type matching theorems for finitely closed and open covers are given. As applications, we establish some intersection theorems which are hyperconvex versions of corresponding results due to Alexandroff and Pasynkoff, Fan, Klee, Horvath and Lassonde. Then Ky Fan type best approximation theorem and Schauder-Tychonoff fixed point...
We establish the Euler-Lagrange inclusion of a nonsmooth integral functional defined on Orlicz-Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.
Currently displaying 1 –
20 of
110