Displaying 21 – 40 of 68

Showing per page

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems

Martin Kahlbacher, Stefan Volkwein (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD a-posteriori error estimator developed by Tröltzsch...

POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems∗

Martin Kahlbacher, Stefan Volkwein (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal control problem governed by a bilinear elliptic equation is considered. This problem is solved by the sequential quadratic programming (SQP) method in an infinite-dimensional framework. In each level of this iterative method the solution of linear-quadratic subproblem is computed by a Galerkin projection using proper orthogonal decomposition (POD). Thus, an approximate (inexact) solution of the subproblem is determined. Based on a POD...

Point derivations for Lipschitz functions andClarke's generalized derivative

Vladimir Demyanov, Diethard Pallaschke (1997)

Applicationes Mathematicae

Clarke’s generalized derivative f 0 ( x , v ) is studied as a function on the Banach algebra Lip(X,d) of bounded Lipschitz functions f defined on an open subset X of a normed vector space E. For fixed x X and fixed v E the function f 0 ( x , v ) is continuous and sublinear in f L i p ( X , d ) . It is shown that all linear functionals in the support set of this continuous sublinear function satisfy Leibniz’s product rule and are thus point derivations. A characterization of the support set in terms of point derivations is given.

Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations

Luís Balsa Bicho, António Ornelas (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniformcontinuity of radiallysymmetric vector minimizers uA(x) = UA(|x|) to multiple integrals ∫BRL**(u(x), |Du(x)|) dx on a ballBR ⊂ ℝd, among the Sobolev functions u(·) in A+W01,1 (BR, ℝm), using a jointlyconvexlscL∗∗ : ℝm×ℝ → [0,∞] with L∗∗(S,·) even and superlinear. Besides such basic hypotheses, L∗∗(·,·) is assumed to satisfy also a geometrical constraint, which we call quasi − scalar; the simplest example being the biradial case L∗∗(|u(x)|,|Du(x)|). Complete liberty is given for L∗∗(S,λ)...

Currently displaying 21 – 40 of 68