Ein Satz über eindeutige Abbildung und seine Anwendung in der Variationsrechnung
A well-known result in public economics is that capital income should not be taxed in the long run. This result has been derived using necessary optimality conditions for an appropriate dynamic Stackelberg game. In this paper we consider three models of dynamic taxation in continuous time and suggest a method for calculating their feedback Nash equilibria based on a sufficient condition for optimality. We show that the optimal tax on capital income is generally different from zero.
The aim of this paper is to give a general idea to state optimality conditions of control problems in the following form: , (1) where is a set of admissible controls and is the solution of the following equation: ; . (2). The results are nonlocal and new.
This paper studies the attainable set at time T>0 for the control system showing that, under suitable assumptions on f, such a set satisfies a uniform interior sphere condition. The interior sphere property is then applied to recover a semiconcavity result for the value function of time optimal control problems with a general target, and to deduce C1,1-regularity for boundaries of attainable sets.
This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration.