Page 1

Displaying 1 – 17 of 17

Showing per page

Second order optimality conditions in the smooth case and applications in optimal control

Bernard Bonnard, Jean-Baptiste Caillau, Emmanuel Trélat (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions...

Second-order sufficient conditions for strong solutions to optimal control problems

J. Frédéric Bonnans, Xavier Dupuis, Laurent Pfeiffer (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, given a reference feasible trajectory of an optimal control problem, we say that the quadratic growth property for bounded strong solutions holds if the cost function of the problem has a quadratic growth over the set of feasible trajectories with a bounded control and with a state variable sufficiently close to the reference state variable. Our sufficient second-order optimality conditions in Pontryagin form ensure this property and ensure a fortiori that the reference trajectory...

Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints

Nikolai P. Osmolovskii (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Second-order sufficient conditions of a bounded strong minimum are derived for optimal control problems of ordinary differential equations with initial-final state constraints of equality and inequality type and control constraints of inequality type. The conditions are stated in terms of quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear independence of gradients of active control constraints they guarantee the bounded strong quadratic growth...

Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints

Nikolai P. Osmolovskii (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Second-order sufficient conditions of a bounded strong minimum are derived for optimal control problems of ordinary differential equations with initial-final state constraints of equality and inequality type and control constraints of inequality type. The conditions are stated in terms of quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear independence of gradients of active control constraints they...

Solution for a classical problem in the calculus of variations via rationalized Haar functions

Mohsen Razzaghi, Yadollah Ordokhani (2001)

Kybernetika

A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.

Currently displaying 1 – 17 of 17

Page 1