Calcul des variations d'après Weierstrass
MSC 2010: 49K05, 26A33We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.
We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.
We consider the problem of optimal investment for maximal expected utility in an incomplete market with trading strategies subject to closed constraints. Under the assumption that the underlying utility function has constant sign, we employ the comparison principle for BSDEs to construct a family of supermartingales leading to a necessary and sufficient condition for optimality. As a consequence, the value function is characterized as the initial value of a BSDE with Lipschitz growth.