Displaying 221 – 240 of 928

Showing per page

Existence of solutions to weak nonlinear bilevel problems via MinSup and d.c. problems

Abdelmalek Aboussoror, Abdelatif Mansouri (2008)

RAIRO - Operations Research

In this paper, which is an extension of [4], we first show the existence of solutions to a class of Min Sup problems with linked constraints, which satisfy a certain property. Then, we apply our result to a class of weak nonlinear bilevel problems. Furthermore, for such a class of bilevel problems, we give a relationship with appropriate d.c. problems concerning the existence of solutions.

Explicit Construction of Piecewise Affine Mappings with Constraints

Waldemar Pompe (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We construct explicitly piecewise affine mappings u:ℝ ⁿ → ℝ ⁿ with affine boundary data satisfying the constraint div u = 0. As an application of the construction we give short and direct proofs of the main approximation lemmas with constraints in convex integration theory. Our approach provides direct proofs avoiding approximation by smooth mappings and works in all dimensions n ≥ 2. After a slight modification of our construction, the constraint div u = 0 can be turned into det Du = 1, giving...

Explicit formulae of distributions and densities of characteristics of a dynamic advertising and pricing model

Kurt L. Helmes, Torsten Templin (2015)

Banach Center Publications

We analyze the optimal sales process of a stochastic advertising and pricing model with constant demand elasticities. We derive explicit formulae of the densities of the (optimal) sales times and (optimal) prices when a fixed finite number of units of a product are to be sold during a finite sales period or an infinite one. Furthermore, for any time t the exact distribution of the inventory, i.e. the number of unsold items, at t is determined and will be expressed in terms of elementary functions....

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Feedback Nash equilibria in optimal taxation problems

Mikhail Krastanov, Rossen Rozenov (2009)

Open Mathematics

A well-known result in public economics is that capital income should not be taxed in the long run. This result has been derived using necessary optimality conditions for an appropriate dynamic Stackelberg game. In this paper we consider three models of dynamic taxation in continuous time and suggest a method for calculating their feedback Nash equilibria based on a sufficient condition for optimality. We show that the optimal tax on capital income is generally different from zero.

Finite-dimensionality of information states in optimal control of stochastic systems: a Lie algebraic approach

Charalambos D. Charalambous (1998)

Kybernetika

In this paper we introduce the sufficient statistic algebra which is responsible for propagating the sufficient statistic, or information state, in the optimal control of stochastic systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then employed to derive finite- dimensional controllers. The sufficient statistic algebra enables us to determine a priori whether there exist finite-dimensional controllers; it also enables us to classify all finite-dimensional controllers....

Currently displaying 221 – 240 of 928