Parabolic equations relative to vector fields.
We prove that Perron's method and the method of half-relaxed limits of Barles-Perthame works for the so called B-continuous viscosity solutions of a large class of fully nonlinear unbounded partial differential equations in Hilbert spaces. Perron's method extends the existence of B-continuous viscosity solutions to many new equations that are not of Bellman type. The method of half-relaxed limits allows limiting operations with viscosity solutions without any a priori estimates. Possible applications...
Resistance to chemotherapies, particularly to anticancer treatments, is an increasing medical concern. Among the many mechanisms at work in cancers, one of the most important is the selection of tumor cells expressing resistance genes or phenotypes. Motivated by the theory of mutation-selection in adaptive evolution, we propose a model based on a continuous variable that represents the expression level of a resistance gene (or genes, yielding a phenotype) influencing in healthy and tumor cells birth/death...
We formulate an Hamilton-Jacobi partial differential equationon a dimensional manifold , with assumptions of convexity of and regularity of (locally in a neighborhood of in ); we define the “min solution” , a generalized solution; to this end, we view as a symplectic manifold. The definition of “min solution” is suited to proving regularity results about ; in particular, we prove in the first part that the closure of the set where is not regular may be covered by a countable number...
This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV10 (2004) 426–451].
We formulate an Hamilton-Jacobi partial differential equation H( x, D u(x))=0 on a n dimensional manifold M, with assumptions of convexity of H(x, .) and regularity of H (locally in a neighborhood of {H=0} in T*M); we define the “minsol solution” u, a generalized solution; to this end, we view T*M as a symplectic manifold. The definition of “minsol solution” is suited to proving regularity results about u; in particular, we prove in the first part that the closure of the set where...
We discuss differentiability properties of convex functions on Heisenberg groups. We show that the notions of horizontal convexity (h-convexity) and viscosity convexity (v-convexity) are equivalent and that h-convex functions are locally Lipschitz continuous. Finally we exhibit Weierstrass-type h-convex functions which are nowhere differentiable in the vertical direction on a dense set or on a Cantor set of vertical lines.
Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we show that the distance function to the conjugate locus which is associated to this problem is locally semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001) 21–40],...
We prove existence and uniqueness of viscosity solutions of Cauchy problems for fully nonlinear unbounded second order Hamilton-Jacobi-Bellman-Isaacs equations defined on the product of two infinite-dimensional Hilbert spaces H'× H'', where H'' is separable. The equations have a special "separated" form in the sense that the terms involving second derivatives are everywhere defined, continuous and depend only on derivatives with respect to x'' ∈ H'', while the unbounded terms are of first order...
We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
We show the uniqueness and the existence of viscosity solutions of Hamilton-Jacobi equations on a smooth Banach space. The tool used is the variational principle of Deville, Godefroy and Zizler. The existence is given by Perron’s method. So we give a comparison assertion for semicontinuous solutions.
This is the expanded text of a lecture about viscosity solutions of degenerate elliptic equations delivered at the XVI Congresso UMI. The aim of the paper is to review some fundamental results of the theory as developed in the last twenty years and to point out some of its recent developments and applications.