Optimal campaign in the smoking dynamics.
We consider a general class of mathematical models P for cancer chemotherapy described as optimal control problems over a fixed horizon with dynamics given by a bilinear system and an objective which is linear in the control. Several two- and three-compartment models considered earlier fall into this class. While a killing agent which is active during cell division constitutes the only control considered in the two-compartment model, Model A, also two three-compartment models, Models B and C, are...
In this paper, we look at a model depicting the relationship of cancer cells in different development stages with immune cells and a cell cycle specific chemotherapy drug. The model includes a constant delay in the mitotic phase. By applying optimal control theory, we seek to minimize the cost associated with the chemotherapy drug and to minimize the number of tumor cells. Global existence of a solution has been shown for this model and existence...
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see [chen], for finite dimensional stochastic equations or [UC], for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see [1990], [ukl])....
This paper is concerned with an optimal control problem governed by the nonlinear one dimensional periodic wave equation with x-dependent coefficients. The control of the system is realized via the outer function of the state. Such a model arises from the propagation of seismic waves in a nonisotropic medium. By investigating some important properties of the linear operator associated with the state equation, we obtain the existence and regularity of the weak solution to the state equation. Furthermore,...
The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...
The aim of the present paper is to study problems of optimal design in mechanics, whose variational form is given by inequalities expressing the principle of virtual power in its inequality form. The elliptic, linear symmetric operators as well as convex sets of possible states depend on the control parameter. The existence theorem for the optimal control is applied to design problems for an elastic laminated plate whose variable thickness appears as a control variable.