Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
598
The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich dual equality and an improvement of the convergence of the minimizing sequences.
The Monge-Kantorovich problem is revisited by means of a variant
of the saddle-point method without appealing to c-conjugates. A
new abstract characterization of the optimal plans is obtained in
the case where the cost function takes infinite values. It leads
us to new explicit sufficient and necessary optimality conditions.
As by-products, we obtain a new proof of the well-known
Kantorovich dual equality and an improvement of the convergence of
the minimizing sequences.
A simple proof is given of a Monge-Kantorovich duality theorem for a lower bounded lower semicontinuous cost function on the product of two completely regular spaces. The proof uses only the Hahn-Banach theorem and some properties of Radon measures, and allows the case of a bounded continuous cost function on a product of completely regular spaces to be treated directly, without the need to consider intermediate cases. Duality for a semicontinuous cost function is then deduced via the use of an...
The Aviles Giga functional is a well known second order functional that forms a model for blistering and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz domain Ω ⊂ ℝ2the functional is I ϵ ( u ) = 1 2 ∫ Ω ϵ -1 1 − Du 2 2 + ϵ D 2 u 2 d z whereubelongs to the subset of functions in W02,2(Ω) whose gradient (in the sense of trace) satisfiesDu(x)·ηx = 1 where ηx is the inward pointing unit normal to ∂Ω at x. In [Ann. Sc. Norm. Super. Pisa Cl....
The Aviles Giga functional is a well known second order functional that forms a model for
blistering and in a certain regime liquid crystals, a related functional models thin
magnetized films. Given Lipschitz domain Ω ⊂ ℝ2 the functional
is
where
u belongs to the subset of functions in
whose gradient (in the
sense of trace) satisfies
Du(x)·ηx = 1
where ηx is the inward pointing unit normal
...
This short paper deals with the classical finite-horizon linear-quadratic regulator problem with the terminal state constrained to be zero, for both continuous and discrete-time systems. Closed-form expressions for the optimal state and costate trajectories of the Hamiltonian system, as well as the corresponding control law, are derived through the solutions of two infinite- horizon LQ problems, thus avoiding the use of the Riccati differential equation. The computation of the optimal value of the...
We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the simplest one having a mechanical sense in which singular subarcs appear in a nontrivial way.
This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a current flowing tangentially in the boundary of the region, as well as the exact controllability the same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary condition. This boundary perturbation improves the regularity of the problem and is therefore a singular perturbation of the original problem. The purpose of the paper is to examine the connection,...
This paper studies the exact controllability of the Maxwell system in a bounded domain, controlled by a
current flowing tangentially in the boundary of the region, as well as the exact controllability the
same problem but perturbed by a dissipative term multiplied by a small parameter in the boundary
condition. This boundary perturbation improves the regularity of the problem and is therefore a
singular perturbation of the original problem. The purpose of the paper is to examine the connection,
for...
We prove a sufficient condition of continuity at the boundary for quasiminima of degenerate type. W. P. Ziemer stated a Wiener-type criterion for the quasiminima defined by Giaquinta and Giusti. In this paper we extend the result of Ziemer to the case of weighted quasiminima, the weight being in the class of Muckenhoupt.
The optimal experiment for estimating the parameters of a nonlinear regression model usually depends on the value of these parameters, hence the problem of designing experiments that are robust with respect to parameter uncertainty. Sequential designpermits to adapt the experiment to the value of the parameters, and can thus be considered as a robust design procedure. By designing theexperiments sequentially, one introduces a feedback of information, and thus dynamics, into the design procedure....
In questa conferenza, vengono esposte le idee essenziali che stanno alla base del classico problema di gestire un portafoglio in modo da rendere massima l'utilità media. I metodi tipici del controllo stocastico sono confrontati con le idee della dualità convessa infinito-dimensionale.
We compare a general controlled diffusion process with a deterministic system
where a second controller drives the disturbance against the first
controller. We show that the two models are equivalent with
respect to two properties: the viability (or controlled
invariance, or weak invariance) of closed smooth sets, and the
existence of a smooth control Lyapunov function ensuring the
stabilizability of the system at an equilibrium.
Currently displaying 41 –
60 of
598