Displaying 261 – 280 of 453

Showing per page

On the Haagerup inequality and groups acting on A ˜ n -buildings

Alain Valette (1997)

Annales de l'institut Fourier

Let Γ be a group endowed with a length function L , and let E be a linear subspace of C Γ . We say that E satisfies the Haagerup inequality if there exists constants C , s > 0 such that, for any f E , the convolutor norm of f on 2 ( Γ ) is dominated by C times the 2 norm of f ( 1 + L ) s . We show that, for E = C Γ , the Haagerup inequality can be expressed in terms of decay of random walks associated with finitely supported symmetric probability measures on Γ . If L is a word length function on a finitely generated group Γ , we show that,...

On the loop inequality for euclidean buildings

Jacek Świątkowski (1997)

Annales de l'institut Fourier

We give an estimate for the number of closed loops of given length in the 1-skeleton of a thick euclidean building. This kind of estimate can be used to prove the (RD) property for the subspace of radial functions on A ˜ n groups, as shown in the paper by A. Valette [same issue].

On the rank of random subsets of finite affine geometry

Wojciech Kordecki (2000)

Discussiones Mathematicae Graph Theory

The aim of the paper is to give an effective formula for the calculation of the probability that a random subset of an affine geometry AG(r-1,q) has rank r. Tables for the probabilities are given for small ranks. The expected time to the first moment at which a random subset of an affine geometry achieves the rank r is derived.

Currently displaying 261 – 280 of 453