Sätze über reguläre Polygone
Cet article est consacré à la géométrie véhiculée par les écrits d’architecture, en particulier les écrits italiens de la seconde moité du xvie siècle. Il explore le rôle central attribué aux instruments dans cette géométrie. De quelle façon s’insère-t-elle dans les multiples traditions mathématiques de la même époque ? Elle se nourrit de fait à la fois d’apports de la tradition savante, de celle des abacistes et de la géométrie pratique. On s’attachera à mettre en évidence, dans les propositions...
For an arbitrary triangle ABC and an integer n we define points Dn, En, Fn on the sides BC, CA, AB respectively, in such a manner that |AC|n|AB|n=|CDn||BDn|,|AB|n|BC|n=|AEn||CEn|,|BC|n|AC|n=|BFn||AFn|. Cevians ADn, BEn, CFn are said to be the Maneeals of order n. In this paper we discuss some properties of the Maneeals and related objects.
The concept of pseudosquare in a general quadratical quasigroup is introduced and connections to some other geometrical concepts are studied. The geometrical presentations of some proved statements are given in the quadratical quasigroup .
We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that...