Displaying 81 – 100 of 239

Showing per page

Isonemality and mononemality of woven fabrics

Bohdan Zelinka (1983)

Aplikace matematiky

The paper studies the diagrams of woven fabrics consisting of white and black squares as geometrical objects and described their symmetries. The concepts of isonemality and mononemality due to B. Grünbaum and G. C. Shephard are used. A conjecture of these authors is proved in a particular case.

La conjecture des soufflets

Jean-Marc Schlenker (2002/2003)

Séminaire Bourbaki

On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.

Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners

Larisa Beilina, Sergey Korotov, Michal Křížek (2005)

Applications of Mathematics

Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.

Currently displaying 81 – 100 of 239