Poznámka o hranatých tělesích pravidelných
Axiomatická metoda je považována za hlavní metodu, kterou je dnes matematika formalizována. Není však jedinou, navíc prošla v průběhu tisíciletí poměrně pestrým vývojem. V tomto příspěvku se pokusíme na základě charakterizace různých typů formalizace matematiky zařadit nejznámější pokusy o axiomatizaci eukleidovské geometrie, zejména Eukleidův, Hilbertův a Birkhoffův.
V článku budeme studovat třídu duálních simplexů v -rozměrném eukleidovském prostoru. Dokážeme, že tato třída je stejná jako třída tzv. dobře centrovaných simplexů. Dále ukážeme, že jisté přirozené konvergenční vlastnosti duálních trojúhelníků nelze přímo zobecnit do trojrozměrného prostoru. K tomuto účelu představíme rovnostěnné čtyřstěny, což je speciální podtřída dobře centrovaných čtyřstěnů.
The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle...