An optimal relative isoperimetric inequality in concave cylindrical domains in .
In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, , Andreev’s Theorem provides five classes of linear inequalities, depending on , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting...
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...