Displaying 241 – 260 of 403

Showing per page

Operations between sets in geometry

Richard J. Gardner, Daniel Hug, Wolfgang Weil (2013)

Journal of the European Mathematical Society

An investigation is launched into the fundamental characteristics of operations on and between sets, with a focus on compact convex sets and star sets (compact sets star-shaped with respect to the origin) in n -dimensional Euclidean space n . It is proved that if n 2 , with three trivial exceptions, an operation between origin-symmetric compact convex sets is continuous in the Hausdorff metric, G L ( n ) covariant, and associative if and only if it is L p addition for some 1 p . It is also demonstrated that if n 2 ,...

Optimal isometries for a pair of compact convex subsets of ℝⁿ

Irmina Herburt, Maria Moszyńska (2009)

Banach Center Publications

In 1989 R. Arnold proved that for every pair (A,B) of compact convex subsets of ℝ there is an Euclidean isometry optimal with respect to L₂ metric and if f₀ is such an isometry, then the Steiner points of f₀(A) and B coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for L p metrics for all p ≥ 2 and the symmetric difference metric.

Optimality conditions for maximizers of the information divergence from an exponential family

František Matúš (2007)

Kybernetika

The information divergence of a probability measure P from an exponential family over a finite set is defined as infimum of the divergences of P from Q subject to Q . All directional derivatives of the divergence from are explicitly found. To this end, behaviour of the conjugate of a log-Laplace transform on the boundary of its domain is analysed. The first order conditions for P to be a maximizer of the divergence from are presented, including new ones when P  is not projectable to .

Permanence of moment estimates for p-products of convex bodies

Ulrich Brehm, Hendrik Vogt, Jürgen Voigt (2002)

Studia Mathematica

It is shown that two inequalities concerning second and fourth moments of isotropic normalized convex bodies in ℝⁿ are permanent under forming p-products. These inequalities are connected with a concentration of mass property as well as with a central limit property. An essential tool are certain monotonicity properties of the Γ-function.

Properties of distance functions on convex surfaces and applications

Jan Rataj, Luděk Zajíček (2011)

Czechoslovak Mathematical Journal

If X is a convex surface in a Euclidean space, then the squared intrinsic distance function dist 2 ( x , y ) is DC (d.c., delta-convex) on X × X in the only natural extrinsic sense. An analogous result holds for the squared distance function dist 2 ( x , F ) from a closed set F X . Applications concerning r -boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given.

Currently displaying 241 – 260 of 403