Page 1 Next

Displaying 1 – 20 of 121

Showing per page

Cardinality of some convex sets and of their sets of extreme points

Zbigniew Lipecki (2011)

Colloquium Mathematicae

We show that the cardinality of a compact convex set W in a topological linear space X satisfies the condition that = . We also establish some relations between the cardinality of W and that of extrW provided X is locally convex. Moreover, we deal with the cardinality of the convex set E(μ) of all quasi-measure extensions of a quasi-measure μ, defined on an algebra of sets, to a larger algebra of sets, and relate it to the cardinality of extrE(μ).

Circumradius versus side lengths of triangles in linear normed spaces

Gennadiy Averkov (2007)

Colloquium Mathematicae

Given a planar convex body B centered at the origin, we denote by ℳ ²(B) the Minkowski plane (i.e., two-dimensional linear normed space) with the unit ball B. For a triangle T in ℳ ²(B) we denote by R B ( T ) the least possible radius of a Minkowskian ball enclosing T. We remark that in the terminology of location science R B ( T ) is the optimum of the minimax location problem with distance induced by B and vertices of T as existing facilities (see, for instance, [HM03] and the references therein). Using methods...

Currently displaying 1 – 20 of 121

Page 1 Next