Page 1 Next

Displaying 1 – 20 of 61

Showing per page

Illumination bodies and affine surface area

Elisabeth Werner (1994)

Studia Mathematica

We show that the affine surface area as(∂K) of a convex body K in n can be computed as a s ( K ) = l i m δ 0 d n ( v o l n ( K δ ) - v o l n ( K ) ) / ( δ 2 / ( n + 1 ) ) where d n is a constant and K δ is the illumination body.

Indice d'un hérisson: étude et applications.

Yves Martínez-Maure (2000)

Publicacions Matemàtiques

Hedgehogs are a natural generalization of convex bodies of class C+2. After recalling some basic facts concerning this generalization, we use the notion of index to study differential and integral geometries of hedgehogs.As applications, we prove a particular case of the Tennis Ball Theorem and a property of normals to a plane convex body of constant width.

Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles

Bernard Maurey (2003/2004)

Séminaire Bourbaki

La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...

Currently displaying 1 – 20 of 61

Page 1 Next