Erratum : Closures of faces of compact convex sets
In this note we introduce a notion of essentially-Euclidean normed spaces (and convex bodies). Roughly speaking, an n-dimensional space is λ-essentially-Euclidean (with 0 < λ < 1) if it has a [λn]-dimensional subspace which has further proportional-dimensional Euclidean subspaces of any proportion. We consider a space X₁ = (ℝⁿ,||·||₁) with the property that if a space X₂ = (ℝⁿ,||·||₂) is "not too far" from X₁ then there exists a [λn]-dimensional subspace E⊂ ℝⁿ such that E₁ = (E,||·||₁) and...
The purpose of this paper is to continue the investigations on extremal values for inner and outer radii of the unit ball of a finite-dimensional real Banach space for the Holmes-Thompson and Busemann measures. Furthermore, we give a related new characterization of ellipsoids in via codimensional cross-section measures.
To reconstruct an even Borel measure on the unit sphere from finitely many values of its sine transform a least square estimator is proposed. Applying results by Gardner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency. We close this paper by giving an estimator for the directional distribution of certain three-dimensional stationary Poisson processes of convex cylinders which have applications in material science.
We characterize the linear space ℋ of differences of support functions of convex bodies of 𝔼² and we consider every h ∈ ℋ as the support function of a generalized hedgehog (a rectifiable closed curve having exactly one oriented support line in each direction). The mixed area (for plane convex bodies identified with their support functions) has a symmetric bilinear extension to ℋ which can be interpreted as a mixed area for generalized hedgehogs. We study generalized hedgehogs and we extend the...
We study the way in which the Euclidean subspaces of a Banach space fit together, somewhat in the spirit of the Kashin decomposition. The main tool that we introduce is an estimate regarding the convex hull of a convex body in John's position with a Euclidean ball of a given radius, which leads to a new and simplified proof of the randomized isomorphic Dvoretzky theorem. Our results also include a characterization of spaces with nontrivial cotype in terms of arrangements of Euclidean subspaces.
We relate the total curvature and the isoperimetric deficit of a curve in a two-dimensional space of constant curvature with the area enclosed by the evolute of . We provide also a Gauss-Bonnet theorem for a special class of evolutes.