Displaying 61 – 80 of 104

Showing per page

The skeleta of convex bodies

David G. Larman (2009)

Banach Center Publications

The connectivity and measure theoretic properties of the skeleta of convex bodies in Euclidean space are discussed, together with some long standing problems and recent results.

Theorems of the alternative for cones and Lyapunov regularity of matrices

Bryan Cain, Daniel Hershkowitz, Hans Schneider (1997)

Czechoslovak Mathematical Journal

Standard facts about separating linear functionals will be used to determine how two cones C and D and their duals C * and D * may overlap. When T V W is linear and K V and D W are cones, these results will be applied to C = T ( K ) and D , giving a unified treatment of several theorems of the alternate which explain when C contains an interior point of D . The case when V = W is the space H of n × n Hermitian matrices, D is the n × n positive semidefinite matrices, and T ( X ) = A X + X * A yields new and known results about the existence of block diagonal...

Thin-shell concentration for convex measures

Matthieu Fradelizi, Olivier Guédon, Alain Pajor (2014)

Studia Mathematica

We prove that for s < 0, s-concave measures on ℝⁿ exhibit thin-shell concentration similar to the log-concave case. This leads to a Berry-Esseen type estimate for most of their one-dimensional marginal distributions. We also establish sharp reverse Hölder inequalities for s-concave measures.

Currently displaying 61 – 80 of 104