On convex metric spaces V
Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let be a maximal cyclic α(·)-monotone multifunction with non-empty values. We give a sufficient condition on α(·) and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ-convex with modulus α(·), such that Γ is the weak Φ-subdifferential of f with modulus α(·), .
In Rolewicz (2002) it was proved that every strongly α(·)-paraconvex function defined on an open convex set in a separable Asplund space is Fréchet differentiable on a residual set. In this paper it is shown that the assumption of separability is not essential.
Let be a Euclidean space or the Hilbert space ℓ², let k ∈ ℕ with k < dim , and let B be convex and closed in . Let be a collection of linear k-subspaces of . A set C ⊂ is called a -imitation of B if B and C have identical orthogonal projections along every P ∈ . An extremal point of B with respect to the projections under is a point that all closed subsets of B that are -imitations of B have in common. A point x of B is called exposed by if there is a P ∈ such that (x+P) ∩ B = x. In the present...
We are interested in Gaussian versions of the classical Brunn-Minkowski inequality. We prove in a streamlined way a semigroup version of the Ehrhard inequality for m Borel or convex sets based on a previous work by Borell. Our method also yields semigroup proofs of the geometric Brascamp-Lieb inequality and of its reverse form, which follow exactly the same lines.
The aim of the paper is to present three-variable generalizations of fuzzy metric spaces in sense of George and Veeramani from functional and topological points of view, respectively. From the viewpoint of functional generalization, we introduce a notion of generalized fuzzy 2-metric spaces, study their topological properties, and point out that it is also a common generalization of both tripled fuzzy metric spaces proposed by Tian et al. and -fuzzy metric spaces proposed by Sedghi and Shobe. Since...
We consider the problem of classifying the convex bodies in the 3-dimensional space depending on the differentiability of their associated quermassintegrals with respect to the one-parameter-depending family given by the inner/outer parallel bodies. It turns out that this problem is closely related to some behavior of the roots of the 3-dimensional Steiner polynomial.
Hyperbolic virtual polytopes arose originally as polytopal versions of counterexamples to the following A.D.Alexandrov’s uniqueness conjecture: Let K ⊂ ℝ3 be a smooth convex body. If for a constant C, at every point of ∂K, we have R 1 ≤ C ≤ R 2 then K is a ball. (R 1 and R 2 stand for the principal curvature radii of ∂K.) This paper gives a new (in comparison with the previous construction by Y.Martinez-Maure and by G.Panina) series of counterexamples to the conjecture. In particular, a hyperbolic...
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.