Displaying 141 – 160 of 1463

Showing per page

Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes

Alexander I. Bobenko, Ivan Izmestiev (2008)

Annales de l’institut Fourier

We present a constructive proof of Alexandrov’s theorem on the existence of a convex polytope with a given metric on the boundary. The polytope is obtained by deforming certain generalized convex polytopes with the given boundary. We study the space of generalized convex polytopes and discover a connection with weighted Delaunay triangulations of polyhedral surfaces. The existence of the deformation follows from the non-degeneracy of the Hessian of the total scalar curvature of generalized convex...

Almost sure asymptotic behaviour of the r -neighbourhood surface area of Brownian paths

Ondřej Honzl, Jan Rataj (2012)

Czechoslovak Mathematical Journal

We show that whenever the q -dimensional Minkowski content of a subset A d exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in d , d 3 .

Ambiguous loci of the farthest distance mapping from compact convex sets

F. De Blasi, J. Myjak (1995)

Studia Mathematica

Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by K 0 the set of all X ∈ K() such that the farthest distance mapping a M X ( a ) is multivalued on a dense subset of . It is proved that K 0 is a residual dense subset of K().

An alternative proof of Petty's theorem on equilateral sets

Tomasz Kobos (2013)

Annales Polonici Mathematici

The main goal of this paper is to provide an alternative proof of the following theorem of Petty: in a normed space of dimension at least three, every 3-element equilateral set can be extended to a 4-element equilateral set. Our approach is based on the result of Kramer and Németh about inscribing a simplex into a convex body. To prove the theorem of Petty, we shall also establish that for any three points in a normed plane, forming an equilateral triangle of side p, there exists a fourth point,...

Currently displaying 141 – 160 of 1463