Previous Page 4

Displaying 61 – 79 of 79

Showing per page

Sur la rigidité de polyèdres hyperboliques en dimension  3 : cas de volume fini, cas hyperidéal, cas fuchsien

Mathias Rousset (2004)

Bulletin de la Société Mathématique de France

Un polyèdre hyperbolique semi-idéal est un polyèdre dont les sommets sont dans l’espace hyperbolique 3 ou à l’infini. Un polyèdre hyperbolique hyperidéal est, dans le modèle projectif, l’intersection de 3 avec un polyèdre projectif dont les sommets sont tous en dehors de 3 et dont toutes les arêtes rencontrent 3 . Nous classifions les polyèdres semi-idéaux en fonction de leur métrique duale, d’après les résultats de Rivin dans [8] (écrit avec C.D.Hodgson) et [7]. Nous utilisons ce résultat pour retrouver...

Tight bounds for the dihedral angle sums of a pyramid

Sergey Korotov, Lars Fredrik Lund, Jon Eivind Vatne (2023)

Applications of Mathematics

We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval ( 3 π , 5 π ) . Moreover, for any number in ( 3 π , 5 π ) there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound 4 π is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and...

Currently displaying 61 – 79 of 79

Previous Page 4