Displaying 201 – 220 of 436

Showing per page

Planar vector field versions of Carathéodory's and Loewner's conjectures.

Carlos Gutiérrez, Federico Sánchez Bringas (1997)

Publicacions Matemàtiques

Let r = 3, 4, ... , ∞, ω. The Cr-Carathéodory's Conjecture states that every Cr convex embedding of a 2-sphere into R3 must have at least two umbilics. The Cr-Loewner's conjecture (stronger than the one of Carathéodory) states that there are no umbilics of index bigger than one. We show that these two conjectures are equivalent to others about planar vector fields. For instance, if r ≠ ω, Cr-Carathéodory's Conjecture is equivalent to the following one:Let ρ > 0 and β: U ⊂ R2 → R, be of class...

Currently displaying 201 – 220 of 436