Displaying 41 – 60 of 151

Showing per page

Complex surfaces in ℂ⁴ with recurrent shape operators

Paweł Witowicz (2007)

Annales Polonici Mathematici

We study complex affine surfaces in ℂ⁴ with the transversal bundle defined by Nomizu and Vrancken. We classify the surfaces that have recurrent shape operators and parallel transversal metric.

Curvature functionals for curves in the equi-affine plane

Steven Verpoort (2011)

Czechoslovak Mathematical Journal

After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.

Equipping distributions for linear distribution

Marina F. Grebenyuk, Josef Mikeš (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper there are discussed the three-component distributions of affine space A n + 1 . Functions { σ } , which are introduced in the neighborhood of the second order, determine the normal of the first kind of -distribution in every center of -distribution. There are discussed too normals { 𝒵 σ } and quasi-tensor of the second order { 𝒮 σ } . In the same way bunches of the projective normals of the first kind of the -distributions were determined in the differential neighborhood of the second and third order.

General-affine invariants of plane curves and space curves

Shimpei Kobayashi, Takeshi Sasaki (2020)

Czechoslovak Mathematical Journal

We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups GA ( 2 ) = GL ( 2 , ) 2 and GA ( 3 ) = GL ( 3 , ) 3 , respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective...

Currently displaying 41 – 60 of 151