Page 1

Displaying 1 – 3 of 3

Showing per page

Weyl space forms and their submanifolds

Fumio Narita (2001)

Colloquium Mathematicae

We study the geometric structure of a Gauduchon manifold of constant curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of constant curvature. Next, we investigate Weyl submanifolds of such manifolds.

Weyl submersions of Weyl manifolds

Fumio Narita (2007)

Colloquium Mathematicae

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.

Willmore submanifolds in the unit sphere.

Guo Zhen (2004)

Collectanea Mathematica

In this paper we generalize the self-adjoint differential operator (used by Cheng-Yau) on hypersurfaces of a constant curvature manifold to general submanifolds. The generalized operator is no longer self-adjoint. However we present its adjoint operator. By using this operator we get the pinching theorem on Willmore submanifolds which is analogous to the pinching theorem on minimal submanifold of a sphere given by Simon and Chern-Do Carmo-Kobayashi.

Currently displaying 1 – 3 of 3

Page 1