Ricci and Bianchi identities for -normal -linear connections on .
In this paper we prove that there is a bijective correspondence between connections of , the principal bundle of the second order frames of , and stochastic parallel transport in the tangent space of . We construct in a direct geometric way a prolongation of connections without torsion of to connections of . We interpret such prolongation in terms of stochastic calculus.
On donne une nouvelle définition des connexions non linéaires et, plus généralement des connexions non homogènes, en faisant intervenir la structure presque tangente naturelle du fibré tangent.Ceci permet d’établir intrinsèquement les équations différentielles qui lient une connexion à sa gerbe.Ce formalisme est ensuite appliqué à l’étude des connexions sur une variété finslérienne et sur un système mécanique : on obtient dans le cas finslérien une généralisation du “théorème fondamental de la géométrie...
En utilisant le formalisme introduit dans un article précédent, on établit les relations qui lient les connexions non linéaires, sur une variété et les connexions linéaires sur le fibré vertical (connexions de vecteurs et de directions).Les résultats sont ensuite appliqués à la géométrie finslérienne et l’on interprète les connexions de Berwald et de Cartan en termes de relèvements particuliers de la connexion canonique.Dans le cadre d’un système mécanique, on montre qu’il existe un relèvement...
First-order jet bundles can be put at the foundations of the modern geometric approach to nonlinear PDEs, since higher-order jet bundles can be seen as constrained iterated jet bundles. The definition of first-order jet bundles can be given in many equivalent ways - for instance, by means of Grassmann bundles. In this paper we generalize it by means of flag bundles, and develop the corresponding theory for higher-oder and infinite-order jet bundles. We show that this is a natural geometric framework...
Around 1923, Élie Cartan introduced affine connections on manifolds and defined the main related concepts: torsion, curvature, holonomy groups. He discussed applications of these concepts in Classical and Relativistic Mechanics; in particular he explained how parallel transport with respect to a connection can be related to the principle of inertia in Galilean Mechanics and, more generally, can be used to model the motion of a particle in a gravitational field. In subsequent papers, Élie Cartan...
We investigate which three dimensional near-horizon metrics admit a compatible 1-form such that defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.