Page 1

Displaying 1 – 7 of 7

Showing per page

Classification of 4 -dimensional homogeneous weakly Einstein manifolds

Teresa Arias-Marco, Oldřich Kowalski (2015)

Czechoslovak Mathematical Journal

Y. Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A. Gray and T. J. Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting case, where...

Classification of 4-dimensional homogeneous D'Atri spaces

Teresa Arias-Marco, Oldřich Kowalski (2008)

Czechoslovak Mathematical Journal

The property of being a D’Atri space (i.e., a space with volume-preserving symmetries) is equivalent to the infinite number of curvature identities called the odd Ledger conditions. In particular, a Riemannian manifold ( M , g ) satisfying the first odd Ledger condition is said to be of type 𝒜 . The classification of all 3-dimensional D’Atri spaces is well-known. All of them are locally naturally reductive. The first attempts to classify all 4-dimensional homogeneous D’Atri spaces were done in the papers...

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺.

Currently displaying 1 – 7 of 7

Page 1