Page 1

Displaying 1 – 2 of 2

Showing per page

Geometry of the rolling ellipsoid

Krzysztof Andrzej Krakowski, Fátima Silva Leite (2016)

Kybernetika

We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two....

Global Gronwall estimates for integral curves on Riemannian manifolds.

Michael Kunzinger, Hermann Schichl, Roland Steinbauer, James A. Vickers (2006)

Revista Matemática Complutense

We prove Gronwall-type estimates for the distance of integral curves of smooth vector fields on a Riemannian manifold. Such estimates are of central importance for all methods of solving ODEs in a verified way, i.e., with full control of roundoff errors. Our results may therefore be seen as a prerequisite for the generalization of such methods to the setting of Riemannian manifolds.

Currently displaying 1 – 2 of 2

Page 1