Flat tensor product surfaces of pseudo-Euclidean curves
We determine the flat tensor product surfaces of two curves in pseudo-Euclidean spaces of arbitrary dimensions.
We determine the flat tensor product surfaces of two curves in pseudo-Euclidean spaces of arbitrary dimensions.
This paper deals with a family of lightlike (null) hypersurfaces (H u) of a Lorentzian manifold M such that each null normal vector ℓ of H u is not entirely in H u, but, is defined in some open subset of M around H u. Although the family (H u) is not unique, we show, subject to some reasonable condition(s), that the involved induced objects are independent of the choice of (H u) once evaluated at u = constant. We use (n+1)-splitting Lorentzian manifold to obtain a normalization of ℓ and a well-defined...
Par une métrique mixte on comprend une métrique définie dans un domaine du plan, changeant de caractère – sur une région elle est riemannienne, sur une autre lorentzienne. On se place dans un point appartenant à la frontière entre ces deux régions et on cherche une forme locale « la plus simple » de notre métrique – un problème analogue à l’existance des coordonnées isothermes dans le cas classique, riemannien ou lorentzien. On montre que génériquement on peut se ramener à un seul modèle conforme...