Page 1

Displaying 1 – 18 of 18

Showing per page

Some framed f -structures on transversally Finsler foliations

Cristian Ida (2011)

Annales UMCS, Mathematica

Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3, ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.

Some results on curvature and topology of Finsler manifolds

Bing Ye Wu (2013)

Annales Polonici Mathematici

We investigate the curvature and topology of Finsler manifolds, mainly the growth of the fundamental group. By choosing a new counting function for the fundamental group that does not rely on the generators, we are able to discuss the topic in a more general case, namely, we do not demand that the manifold is compact or the fundamental group is finitely generated. Among other things, we prove that the fundamental group of a forward complete and noncompact Finsler n-manifold (M,F) with nonnegative...

Some results on the geometry of Minkowski plane

Bing Ye Wu (2010)

Archivum Mathematicum

In this paper we study the geometry of Minkowski plane and obtain some results. We focus on the curve theory in Minkowski plane and prove that the total curvature of any simple closed curve equals to the total Landsberg angle. As the result, the sum of oriented exterior Landsberg angles of any polygon is also equal to the total Landsberg angle, and when the Minkowski plane is reversible, the sum of interior Landsberg angles of any n -gon is n - 2 2 times of the total Landsberg angle. Our results generalizes...

Some rigidity theorems for Finsler manifolds of sectional flag curvature

Bing Ye Wu (2010)

Archivum Mathematicum

In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.

Structure presque tangente et connexions I

Joseph Grifone (1972)

Annales de l'institut Fourier

On donne une nouvelle définition des connexions non linéaires et, plus généralement des connexions non homogènes, en faisant intervenir la structure presque tangente naturelle du fibré tangent.Ceci permet d’établir intrinsèquement les équations différentielles qui lient une connexion à sa gerbe.Ce formalisme est ensuite appliqué à l’étude des connexions sur une variété finslérienne et sur un système mécanique : on obtient dans le cas finslérien une généralisation du “théorème fondamental de la géométrie...

Structure presque tangente et connexions II

Joseph Grifone (1972)

Annales de l'institut Fourier

En utilisant le formalisme introduit dans un article précédent, on établit les relations qui lient les connexions non linéaires, sur une variété M et les connexions linéaires sur le fibré vertical (connexions de vecteurs et de directions).Les résultats sont ensuite appliqués à la géométrie finslérienne et l’on interprète les connexions de Berwald et de Cartan en termes de relèvements particuliers de la connexion canonique.Dans le cadre d’un système mécanique, on montre qu’il existe un relèvement...

Currently displaying 1 – 18 of 18

Page 1