Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Hermitian Manifolds of Pointwise Constant Antiholomorphic Sectional Curvatures

Ganchev, Georgi, Kassabov, Ognian (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 53B35, Secondary 53C50.In dimension greater than four, we prove that if a Hermitian non-Kaehler manifold is of pointwise constant antiholomorphic sectional curvatures, then it is of constant sectional curvatures.

Higher order connections.

Eastwood, Michael G. (2009)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Higher order contact of real curves in a real hyperquadric. II

Yuli Villarroel (1998)

Archivum Mathematicum

Let Φ be an Hermitian quadratic form, of maximal rank and index ( n , 1 ) , defined over a complex ( n + 1 ) vector space V . Consider the real hyperquadric defined in the complex projective space P n V by Q = { [ ς ] P n V , Φ ( ς ) = 0 } . Let G be the subgroup of the special linear group which leaves Q invariant and D the ( 2 n ) - distribution defined by the Cauchy Riemann structure induced over Q . We study the real regular curves of constant type in Q , tangent to D , finding a complete system of analytic invariants for two curves to be locally equivalent...

Hodge-Bott-Chern decompositions of mixed type forms on foliated Kähler manifolds

Cristian Ida (2014)

Colloquium Mathematicae

The Bott-Chern cohomology groups and the Bott-Chern Laplacian on differential forms of mixed type on a compact foliated Kähler manifold are defined and studied. Also, a Hodge decomposition theorem of Bott-Chern type for differential forms of mixed type is proved. Finally, the case of projectivized tangent bundle of a complex Finsler manifold is discussed.

Holomorphically projective mappings of compact semisymmetric manifolds

Raad J. K. al Lami (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we consider holomorphically projective mappings from the compact semisymmetric spaces A n onto (pseudo-) Kählerian spaces K ¯ n . We proved that in this case space A n is holomorphically projective flat and K ¯ n is space with constant holomorphic curvature. These results are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Domashev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian...

Homogénéité locale pour les métriques riemanniennes holomorphes en dimension 3

Sorin Dumitrescu (2007)

Annales de l’institut Fourier

Une métrique riemannienne holomorphe sur une variété complexe M est une section holomorphe q du fibré S 2 ( T * M ) des formes quadratiques complexes sur l’espace tangent holomorphe à M telle que, en tout point m de M , la forme quadratique complexe q ( m ) est non dégénérée (de rang maximal, égal à la dimension complexe de M ). Il s’agit de l’analogue, dans le contexte holomorphe, d’une métrique riemannienne (réelle). Contrairement au cas réel, l’existence d’une telle métrique sur une variété complexe compacte n’est...

Homogeneous Cartan geometries

Matthias Hammerl (2007)

Archivum Mathematicum

We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.

Currently displaying 1 – 20 of 33

Page 1 Next