Displaying 961 – 980 of 1303

Showing per page

Special compositions in affinely connected spaces without a torsion

Zlatanov, Georgi (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 53B05, 53B99.Let AN be an affinely connected space without a torsion. With the help of N independent vector fields and their reciprocal covectors is built an affinor which defines a composition Xn ×Xm (n+m = N). The structure is integrable. New characteristics by the coefficients of the derivative equations are found for special compositions, studied in [1], [3]. Two-dimensional manifolds, named as bridges, which cut the both base manifolds of the composition...

Special Einstein’s equations on Kähler manifolds

Irena Hinterleitner, Volodymyr Kiosak (2010)

Archivum Mathematicum

This work is devoted to the study of Einstein equations with a special shape of the energy-momentum tensor. Our results continue Stepanov’s classification of Riemannian manifolds according to special properties of the energy-momentum tensor to Kähler manifolds. We show that in this case the number of classes reduces.

Stanilov-Tsankov-Videv theory.

Brozos-Vázquez, Miguel, Fiedler, Bernd, García-Río, Eduardo, Gilkey, Peter, Nikčević, Stana, Stanilov, Grozio, Tsankov, Yulian, Vázquez-Lorenzo, Ramón, Videv, Veselin (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Stochastic parallel transport and connections of H 2 M

Pedro Catuogno (1999)

Archivum Mathematicum

In this paper we prove that there is a bijective correspondence between connections of H 2 M , the principal bundle of the second order frames of M , and stochastic parallel transport in the tangent space of M . We construct in a direct geometric way a prolongation of connections without torsion of M to connections of H 2 M . We interpret such prolongation in terms of stochastic calculus.

Structure presque tangente et connexions I

Joseph Grifone (1972)

Annales de l'institut Fourier

On donne une nouvelle définition des connexions non linéaires et, plus généralement des connexions non homogènes, en faisant intervenir la structure presque tangente naturelle du fibré tangent.Ceci permet d’établir intrinsèquement les équations différentielles qui lient une connexion à sa gerbe.Ce formalisme est ensuite appliqué à l’étude des connexions sur une variété finslérienne et sur un système mécanique : on obtient dans le cas finslérien une généralisation du “théorème fondamental de la géométrie...

Structure presque tangente et connexions II

Joseph Grifone (1972)

Annales de l'institut Fourier

En utilisant le formalisme introduit dans un article précédent, on établit les relations qui lient les connexions non linéaires, sur une variété M et les connexions linéaires sur le fibré vertical (connexions de vecteurs et de directions).Les résultats sont ensuite appliqués à la géométrie finslérienne et l’on interprète les connexions de Berwald et de Cartan en termes de relèvements particuliers de la connexion canonique.Dans le cadre d’un système mécanique, on montre qu’il existe un relèvement...

Currently displaying 961 – 980 of 1303