Page 1

Displaying 1 – 8 of 8

Showing per page

Maximal rationally connected fibrations and movable curves

Luis E. Solá Conde, Matei Toma (2009)

Annales de l’institut Fourier

A well known result of Miyaoka asserts that a complex projective manifold is uniruled if its cotangent bundle restricted to a general complete intersection curve is not nef. Using the Harder-Narasimhan filtration of the tangent bundle, it can moreover be shown that the choice of such a curve gives rise to a rationally connected foliation of the manifold. In this note we show that, conversely, a movable curve can be found so that the maximal rationally connected fibration of the manifold may be recovered...

Measured geodesic laminations in Flatland

Thomas Morzadec (2012/2014)

Séminaire de théorie spectrale et géométrie

Since their introduction by Thurston, measured geodesic laminations on hyperbolic surfaces occur in many contexts. In this survey, we give a generalization of geodesic laminations on surfaces endowed with a half-translation structure (that is a singular flat surface with holonomy { ± Id } ), called flat laminations, and we define transverse measures on flat laminations similar to transverse measures on hyperbolic laminations, taking into account that the images of the leaves of a flat lamination are in...

Currently displaying 1 – 8 of 8

Page 1