Displaying 141 – 160 of 307

Showing per page

On convergence theory in fuzzy topological spaces and its applications

Nouh, Ali Ahmed (2005)

Czechoslovak Mathematical Journal

In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the Q -relation and the Q -neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong Q -compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar...

On ideal equal convergence

Rafał Filipów, Marcin Staniszewski (2014)

Open Mathematics

We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów...

On meager function spaces, network character and meager convergence in topological spaces

Taras O. Banakh, Volodymyr Mykhaylyuk, Lubomyr Zdomsky (2011)

Commentationes Mathematicae Universitatis Carolinae

For a non-isolated point x of a topological space X let nw χ ( x ) be the smallest cardinality of a family 𝒩 of infinite subsets of X such that each neighborhood O ( x ) X of x contains a set N 𝒩 . We prove that (a) each infinite compact Hausdorff space X contains a non-isolated point x with nw χ ( x ) = 0 ; (b) for each point x X with nw χ ( x ) = 0 there is an injective sequence ( x n ) n ω in X that -converges to x for some meager filter on ω ; (c) if a functionally Hausdorff space X contains an -convergent injective sequence for some meager filter...

On quasi-p-bounded subsets

M. Sanchis, A. Tamariz-Mascarúa (1999)

Colloquium Mathematicae

The notion of quasi-p-boundedness for p ∈ ω * is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω * can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω * , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × P R K ( p ) is bounded in X × P R K ( p ) , if and only if c l β ( X × P R K ( p ) ) ( B × P R K ( p ) ) = c l β X B × β ( ω ) , where P R K ( p ) is the set of Rudin-Keisler predecessors of p.

On spaces with the ideal convergence property

Jakub Jasinski, Ireneusz Recław (2008)

Colloquium Mathematicae

Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to I b , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.

Currently displaying 141 – 160 of 307