On convergence groups and convergence uniformities
In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the -relation and the -neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong -compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar...
We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów...
For a non-isolated point of a topological space let be the smallest cardinality of a family of infinite subsets of such that each neighborhood of contains a set . We prove that (a) each infinite compact Hausdorff space contains a non-isolated point with ; (b) for each point with there is an injective sequence in that -converges to for some meager filter on ; (c) if a functionally Hausdorff space contains an -convergent injective sequence for some meager filter...
The notion of quasi-p-boundedness for p ∈ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in can be defined in terms of quasi-p-pseudocompactness. For p ∈ , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × is bounded in X × , if and only if , where is the set of Rudin-Keisler predecessors of p.
Let I ⊆ P(ω) be an ideal. We continue our investigation of the class of spaces with the I-ideal convergence property, denoted (I). We show that if I is an analytic, non-countably generated P-ideal then (I) ⊆ s₀. If in addition I is non-pathological and not isomorphic to , then (I) spaces have measure zero. We also present a characterization of the (I) spaces using clopen covers.