Some properties of fuzzy quasimetric spaces.
In this paper, we introduce the notion of the -weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under -weakly smooth fuzzy continuous functions.
In this paper, we study the relation between a fuzzy measure and a fuzzy metric which is induced by the fuzzy measure. We also discuss some basic properties of the constructed fuzzy metric space. In particular, we show that the nonatom of fuzzy measure space can be characterized in the constructed fuzzy metric space.
In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.
The main purpose of this paper is to introduce the concept of -type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the -type fuzzy topological spaces.
In this paper a new class of fuzzy topological spaces called pairwise ordered fuzzy extremally disconnected spaces is introduced. Tietze extension theorem for pairwise ordered fuzzy extremally disconnected spaces has been discussed as in the paper of Kubiak (1987) besides proving several other propositions and lemmas.
Rough sets, developed by Pawlak, are an important model of incomplete or partially known information. In this article, which is essentially a continuation of [11], we characterize rough sets in terms of topological closure and interior, as the approximations have the properties of the Kuratowski operators. We decided to merge topological spaces with tolerance approximation spaces. As a testbed for our developed approach, we restated the results of Isomichi [13] (formalized in Mizar in [14]) and...
In this paper the concept of a fuzzy contraction mapping on a fuzzy metric space is introduced and it is proved that every fuzzy contraction mapping on a complete fuzzy metric space has a unique fixed point.
In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping...