Displaying 201 – 220 of 258

Showing per page

On the generalizations of Siegel's fixed point theorem.

J. S. Jung, S. S. Chang, B. S. Lee, Y. J. Cho, S. M. Kang (2001)

Mathware and Soft Computing

In this paper, we establish a new version of Siegel's fixed point theorem in generating spaces of quasi-metric family. As consequences, we obtain general versions of the Downing-Kirk's fixed point and Caristi's fixed point theorem in the same spaces. Some applications of these results to fuzzy metric spaces and probabilistic metric spaces are presented.

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

On the hyperspace of bounded closed sets under a generalized Hausdorff stationary fuzzy metric

Dong Qiu, Chongxia Lu, Shuai Deng, Liang Wang (2014)

Kybernetika

In this paper, we generalize the classical Hausdorff metric with t-norms and obtain its basic properties. Furthermore, for a given stationary fuzzy metric space with a t-norm without zero divisors, we propose a method for constructing a generalized Hausdorff fuzzy metric on the set of the nonempty bounded closed subsets. Finally we discuss several important properties as completeness, completion and precompactness.

On the ideal (v 0)

Piotr Kalemba, Szymon Plewik, Anna Wojciechowska (2008)

Open Mathematics

The σ-ideal (v 0) is associated with the Silver forcing, see [5]. Also, it constitutes the family of all completely doughnut null sets, see [9]. We introduce segment topologies to state some resemblances of (v 0) to the family of Ramsey null sets. To describe add(v 0) we adopt a proof of Base Matrix Lemma. Consistent results are stated, too. Halbeisen’s conjecture cov(v 0) = add(v 0) is confirmed under the hypothesis t = min{cf(c), r}. The hypothesis cov(v 0) = ω 1 implies that (v 0) has the ideal...

On the Noetherian type of topological spaces

S. A. Peregudov (1997)

Commentationes Mathematicae Universitatis Carolinae

The Noetherian type of topological spaces is introduced. Connections between the Noetherian type and other cardinal functions of topological spaces are obtained.

On the Novak number of a hyperspace

Angelo Bella, Camillo Costantini (1992)

Commentationes Mathematicae Universitatis Carolinae

An estimate for the Novak number of a hyperspace with the Vietoris topology is given. As a consequence it is shown that this cardinal function can decrease passing from a space to its hyperspace.

On the open-open game

Peg Daniels, Kenneth Kunen, Haoxuan Zhou (1994)

Fundamenta Mathematicae

We modify a game due to Berner and Juhász to get what we call “the open-open game (of length ω)”: a round consists of player I choosing a nonempty open subset of a space X and II choosing a nonempty open subset of I’s choice; I wins if the union of II’s open sets is dense in X, otherwise II wins. This game is of interest for ccc spaces. It can be translated into a game on partial orders (trees and Boolean algebras, for example). We present basic results and various conditions under which I or II...

Currently displaying 201 – 220 of 258