On -open setes.
In this paper we introduce the notation of t-best approximatively compact sets, t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best proximity pair in fuzzy metric spaces. The results derived in this paper are more general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy normed spaces and probabilistic metric spaces.
The structure of binary coproducts in the category of frames is analyzed, and the results are then applied widely in the study of compactness, local compactness (continuous frames), separatedness, pushouts and closed frame homomorphisms.
Mappings preserving Cauchy sequences and certain types of convergences connected with these mappings are investigated.
A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property which we show is satisfied by all ξ-adic spaces. Whereas Property is productive, we show that a weaker (but more natural) Property is not productive. Polyadic...
If Martin’s Axiom is true and the continuum hypothesis is false, and X is a compact Radon measure space with a non-separable space, then there is a continuous surjection from X onto .