Displaying 41 – 60 of 141

Showing per page

Closed discrete subsets of separable spaces and relative versions of normality, countable paracompactness and property ( a )

Samuel Gomes da Silva (2011)

Commentationes Mathematicae Universitatis Carolinae

In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property ( a ) . It follows that it is consistent that closed discrete subsets of a separable space X which are also relatively normal (relatively countably paracompact, relatively ( a ) ) in X are necessarily countable. There are, however, consistent examples of...

Closed mapping theorems on k -spaces with point-countable k -networks

Alexander Shibakov (1995)

Commentationes Mathematicae Universitatis Carolinae

We prove some closed mapping theorems on k -spaces with point-countable k -networks. One of them generalizes Lašnev’s theorem. We also construct an example of a Hausdorff space U r with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a k -space X with a point-countable k -network admitting a closed surjection which is not compact-covering contains a closed copy of U r .

Closure spaces and characterizations of filters in terms of their Stone images

Anh Tran Mynard, Frédéric Mynard (2007)

Czechoslovak Mathematical Journal

Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.

Coherent ultrafilters and nonhomogeneity

Jan Starý (2015)

Commentationes Mathematicae Universitatis Carolinae

We introduce the notion of a coherent P -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a P -point on ω , and show that these ultrafilters exist generically under 𝔠 = 𝔡 . This improves the known existence result of Ketonen [On the existence of P -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241] can...

Coincidence point theorems in certain topological spaces

Jong Soo Jung, Yeol Je Cho, Shin Min Kang, Yong Kab Choi, Byung Soo Lee (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish some new versions of coincidence point theorems for single-valued and multi-valued mappings in F-type topological space. As applications, we utilize our main theorems to prove coincidence point theorems and fixed point theorems for single-valued and multi-valued mappings in fuzzy metric spaces and probabilistic metric spaces.

Coloring Cantor sets and resolvability of pseudocompact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2018)

Commentationes Mathematicae Universitatis Carolinae

Let us denote by Φ ( λ , μ ) the statement that 𝔹 ( λ ) = D ( λ ) ω , i.e. the Baire space of weight λ , has a coloring with μ colors such that every homeomorphic copy of the Cantor set in 𝔹 ( λ ) picks up all the μ colors. We call a space X π -regular if it is Hausdorff and for every nonempty open set U in X there is a nonempty open set V such that V ¯ U . We recall that a space X is called feebly compact if...

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. Kočinac, Marion Scheepers (2003)

Fundamenta Mathematicae

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko property. 2....

Currently displaying 41 – 60 of 141