Classifying stationary sets: a survey
Some results on cleavability theory are presented. We also show some new [16]'s results.
In this paper we show that a separable space cannot include closed discrete subsets which have the cardinality of the continuum and satisfy relative versions of any of the following topological properties: normality, countable paracompactness and property . It follows that it is consistent that closed discrete subsets of a separable space which are also relatively normal (relatively countably paracompact, relatively ) in are necessarily countable. There are, however, consistent examples of...
We prove some closed mapping theorems on -spaces with point-countable -networks. One of them generalizes Lašnev’s theorem. We also construct an example of a Hausdorff space with a countable base that admits a closed map onto metric space which is not compact-covering. Another our result says that a -space with a point-countable -network admitting a closed surjection which is not compact-covering contains a closed copy of .
Fréchet, strongly Fréchet, productively Fréchet, weakly bisequential and bisequential filters (i.e., neighborhood filters in spaces of the same name) are characterized in a unified manner in terms of their images in the Stone space of ultrafilters. These characterizations involve closure structures on the set of ultrafilters. The case of productively Fréchet filters answers a question of S. Dolecki and turns out to be the only one involving a non topological closure structure.
We introduce the notion of a coherent -ultrafilter on a complete ccc Boolean algebra, strengthening the notion of a -point on , and show that these ultrafilters exist generically under . This improves the known existence result of Ketonen [On the existence of -points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), 91–94]. Similarly, the existence theorem of Canjar [On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241] can...
In this paper, we establish some new versions of coincidence point theorems for single-valued and multi-valued mappings in F-type topological space. As applications, we utilize our main theorems to prove coincidence point theorems and fixed point theorems for single-valued and multi-valued mappings in fuzzy metric spaces and probabilistic metric spaces.
Let us denote by the statement that , i.e. the Baire space of weight , has a coloring with colors such that every homeomorphic copy of the Cantor set in picks up all the colors. We call a space -regular if it is Hausdorff and for every nonempty open set in there is a nonempty open set such that . We recall that a space is called feebly compact if...
We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a -space. In [9] we showed that has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. has countable fan tightness and the Reznichenko property. 2....