Displaying 81 – 100 of 1009

Showing per page

Addition theorems for dense subspaces

Aleksander V. Arhangel'skii (2015)

Commentationes Mathematicae Universitatis Carolinae

We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space X which is the union of two dense metrizable subspaces need not be a p -space. However, if a normal space X is the union of a finite family μ of dense subspaces each of which is metrizable by a complete metric, then X is also metrizable by...

Affine group acting on hyperspaces of compact convex subsets of ℝⁿ

Sergey A. Antonyan, Natalia Jonard-Pérez (2013)

Fundamenta Mathematicae

For every n ≥ 2, let cc(ℝⁿ) denote the hyperspace of all nonempty compact convex subsets of the Euclidean space ℝⁿ endowed with the Hausdorff metric topology. Let cb(ℝⁿ) be the subset of cc(ℝⁿ) consisting of all compact convex bodies. In this paper we discover several fundamental properties of the natural action of the affine group Aff(n) on cb(ℝⁿ). We prove that the space E(n) of all n-dimensional ellipsoids is an Aff(n)-equivariant retract of cb(ℝⁿ). This is applied to show that cb(ℝⁿ) is homeomorphic...

An example in the theory of approximate systems

Nikica Uglešić (1993)

Commentationes Mathematicae Universitatis Carolinae

An approximate inverse sequence of plane continua is constructed which negatively answers a question of S. Mardeši’c related to approximate and usual inverse systems. The example also shows that an important result of M.G. Charalambous cannot be improved. As an application, it is shown that a procedure of making an approximate inverse sequence commutative (“taming”) is discontinuous.

Analyse de récession et résultats de stabilité d’une convergence variationnelle, application à la théorie de la dualité en programmation mathématique

Driss Mentagui (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Soit X un espace de Banach de dual topologique X ' . 𝒞 X (resp. 𝒞 X ' ) désigne l’ensemble des parties non vides convexes fermées de X (resp. w * -fermées de X ' ) muni de la topologie de la convergence uniforme sur les bornés des fonctions distances. Cette topologie se réduit à celle de la métrique de Hausdorff sur les convexes fermés bornés [16] et admet en général une représentation en terme de cette dernière [11]. De plus, la métrique qui lui est associée s’est révélée très adéquate pour l’étude quantitative...

Analyse de récession et résultats de stabilité d'une convergence variationnelle, application à la théorie de la dualité en programmation mathématique

Driss Mentagui (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let X be a Banach space and X' its continuous dual. C(X) (resp. C(X')) denotes the set of nonempty convex closed subsets of X (resp. ω*-closed subsets of X') endowed with the topology of uniform convergence of distance functions on bounded sets. This topology reduces to the Hausdorff metric topology on the closed and bounded convex sets [16] and in general has a Hausdorff-like presentation [11]. Moreover, this topology is well suited for estimations and constructive approximations [6-9]. We...

Approximate inverse systems of uniform spaces and an application of inverse systems

Michael G. Charalambous (1991)

Commentationes Mathematicae Universitatis Carolinae

The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with dim n is the limit of an approximate inverse system of metric polyhedra of dim n . A completely metrizable separable space with dim n is the limit of an...

Currently displaying 81 – 100 of 1009