Displaying 101 – 120 of 213

Showing per page

On character and chain conditions in images of products

Murray Bell (1998)

Fundamenta Mathematicae

A scadic space is a Hausdorff continuous image of a product of compact scattered spaces. We complete a theorem begun by G. Chertanov that will establish that for each scadic space X, χ(X) = w(X). A ξ-adic space is a Hausdorff continuous image of a product of compact ordinal spaces. We introduce an either-or chain condition called Property R λ ' which we show is satisfied by all ξ-adic spaces. Whereas Property R λ ' is productive, we show that a weaker (but more natural) Property R λ is not productive. Polyadic...

On Hattori spaces

A. Bouziad, E. Sukhacheva (2017)

Commentationes Mathematicae Universitatis Carolinae

For a subset A of the real line , Hattori space H ( A ) is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from A are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on A which are sufficient and necessary for H ( A ) to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in...

On maps preserving connectedness and/or compactness

István Juhász, Jan van Mill (2018)

Commentationes Mathematicae Universitatis Carolinae

We call a function f : X Y P-preserving if, for every subspace A X with property P, its image f ( A ) also has property P. Of course, all continuous maps are both compactness- and connectedness-preserving and the natural question about when the converse of this holds, i.e. under what conditions such a map is continuous, has a long history. Our main result is that any nontrivial product function, i.e. one having at least two nonconstant factors, that has connected domain, T 1 range, and is connectedness-preserving...

On reflexive closed set lattices

Zhongqiang Yang, Dong Sheng Zhao (2010)

Commentationes Mathematicae Universitatis Carolinae

For a topological space X , let S ( X ) denote the set of all closed subsets in X , and let C ( X ) denote the set of all continuous maps f : X X . A family 𝒜 S ( X ) is called reflexive if there exists 𝒞 C ( X ) such that 𝒜 = { A S ( X ) : f ( A ) A for every f 𝒞 } . Every reflexive family of closed sets in space X forms a sub complete lattice of the lattice of all closed sets in X . In this paper, we continue to study the reflexive families of closed sets in various types of topological spaces. More necessary and sufficient conditions for certain families of closed...

Currently displaying 101 – 120 of 213