Semi-continuity and weak-continuity
Page 1 Next
Takashi Noiri (1981)
Czechoslovak Mathematical Journal
Emilio Acerbi, Giuseppe Buttazzo, Nicola Fusco (1982)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Viene studiata la semicontinuità rispetto alla topologia di per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.
M. Matejdes (1990)
Matematički Vesnik
J. Ewert (1987)
Matematički Vesnik
Caldas Cueva, Miguel (1995)
Portugaliae Mathematica
Jeeranunt Khampakdee, Chawalit Boonpok (2009)
Discussiones Mathematicae - General Algebra and Applications
The aim of this paper is to introduce and study semi-open sets in biclosure spaces. We define semi-continuous maps and semi-irresolute maps and investigate their behavior. Moreover, we introduce pre-semi-open maps in biclosure spaces and study some of their properties.
Navalagi, G.B. (2002)
International Journal of Mathematics and Mathematical Sciences
Moiz ud Din Khan, Rafaqat Noreen, Muhammad Siddique Bosan (2016)
Open Mathematics
In this paper, we continue the study of s-topological and irresolute-topological groups. We define semi-quotient mappings which are stronger than semi-continuous mappings, and then consider semi-quotient spaces and groups. It is proved that for some classes of irresolute-topological groups (G, *, τ) the semi-quotient space G/H is regular. Semi-isomorphisms of s-topological groups are also discussed.
D. Sivaraj (1983)
Matematički Vesnik
Aleksander Maliszewski (2002)
Fundamenta Mathematicae
We consider the following problem: Characterize the pairs ⟨A,B⟩ of subsets of ℝ which can be separated by a function from a given class, i.e., for which there exists a function f from that class such that f = 0 on A and f = 1 on B (the classical separation property) or f < 0 on A and f > 0 on B (a new separation property).
Roman Frič, Nobuyuki Kemoto (1999)
Czechoslovak Mathematical Journal
Let be a cardinal number with the usual order topology. We prove that all subspaces of are weakly sequentially complete and, as a corollary, all subspaces of are sequentially complete. Moreover we show that a subspace of need not be sequentially complete, but note that is sequentially complete whenever and are subspaces of .
Aleksander V. Arhangel'skii, Winfried Just, Grzegorz Plebanek (1996)
Commentationes Mathematicae Universitatis Carolinae
We study conditions under which sequentially continuous functions on topological spaces and sequentially continuous homomorphisms of topological groups are continuous.
Roman Frič, Václav Koutník (1979)
Czechoslovak Mathematical Journal
Noiri, Takashi (2001)
International Journal of Mathematics and Mathematical Sciences
M. Przemski (1988)
Matematički Vesnik
Jeyanthi, V., Renuka Devi, V., Sivaraj, D. (2006)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Zbigniew Piotrowski (1989)
Mathematica Slovaca
Kiliçman, Adem, Salleh, Zabidin (2006)
International Journal of Mathematics and Mathematical Sciences
V. Jeyanthi, V. Renuka Devi, D. Sivaraj (2007)
Matematički Vesnik
D. Adnađević (1986)
Matematički Vesnik
Page 1 Next