Semi-continuity and weak-continuity
Viene studiata la semicontinuità rispetto alla topologia di per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.
The aim of this paper is to introduce and study semi-open sets in biclosure spaces. We define semi-continuous maps and semi-irresolute maps and investigate their behavior. Moreover, we introduce pre-semi-open maps in biclosure spaces and study some of their properties.
In this paper, we continue the study of s-topological and irresolute-topological groups. We define semi-quotient mappings which are stronger than semi-continuous mappings, and then consider semi-quotient spaces and groups. It is proved that for some classes of irresolute-topological groups (G, *, τ) the semi-quotient space G/H is regular. Semi-isomorphisms of s-topological groups are also discussed.
We consider the following problem: Characterize the pairs ⟨A,B⟩ of subsets of ℝ which can be separated by a function from a given class, i.e., for which there exists a function f from that class such that f = 0 on A and f = 1 on B (the classical separation property) or f < 0 on A and f > 0 on B (a new separation property).
Let be a cardinal number with the usual order topology. We prove that all subspaces of are weakly sequentially complete and, as a corollary, all subspaces of are sequentially complete. Moreover we show that a subspace of need not be sequentially complete, but note that is sequentially complete whenever and are subspaces of .
We study conditions under which sequentially continuous functions on topological spaces and sequentially continuous homomorphisms of topological groups are continuous.