The neighborhood complex of an infinite graph.
We show that for some large classes of topological spaces X and any metric space (Z,d), the point of continuity property of any function f: X → (Z,d) is equivalent to the following condition: (*) For every ε > 0, there is a neighbourhood assignment of X such that d(f(x),f(y)) < ε whenever . We also give various descriptions of the filters ℱ on the integers ℕ for which (*) is satisfied by the ℱ-limit of any sequence of continuous functions from a topological space into a metric space.
We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).