Categories of Wallman extendible functions
The problem whether every topological space has a compactification such that every continuous mapping from into a compact space has a continuous extension from into is answered in the negative. For some spaces such compactifications exist.
The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is (resp., ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.
Let be the Isbell-Mr’owka space associated to the -family . We show that if is a countable subgroup of the group of all permutations of , then there is a -family such that every can be extended to an autohomeomorphism of . For a -family , we set for all . It is shown that for every there is a -family such that . As a consequence of this result we have that there is a -family such that whenever and , where for . We also notice that there is no -family such...
In the paper, the notion of a generalized convexity was defined and studied from the view-point of the selection and approximation theory of set-valued maps. We study the simultaneous existence of continuous relative selections and graph-approximations of lower semicontinuous and upper semicontinuous set-valued maps with α-convex values having nonempty intersection.
The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.
For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an -extender (resp. -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...